public class LibLinearClassifier extends AbstractClassifier
Modifier and Type | Field and Description |
---|---|
double |
C |
boolean |
debugOutput |
double |
eps |
boolean |
noBias |
SolverType |
solverType |
PRESENT
Constructor and Description |
---|
LibLinearClassifier() |
Modifier and Type | Method and Description |
---|---|
java.util.Map<java.lang.String,java.lang.Double> |
getParamValues() |
static void |
main(java.lang.String[] args) |
int |
predict(java.util.Map<?,com.ibm.bluej.util.common.MutableDouble> features)
Predict the most likely class label
|
double[] |
predictProb(java.util.Map<?,com.ibm.bluej.util.common.MutableDouble> features)
Predict a probability for each class
|
java.lang.String |
toString() |
void |
train(java.util.Collection<? extends java.util.Map<?,com.ibm.bluej.util.common.MutableDouble>>[] allVectors)
Trains the model using the allVectors as training data
|
convertBinaryFeatures, crossValidate, crossValidate, holdOut, probToWeight, pruneFeatures, testingData
public double C
public double eps
public SolverType solverType
public boolean noBias
public boolean debugOutput
public java.util.Map<java.lang.String,java.lang.Double> getParamValues()
public java.lang.String toString()
toString
in class java.lang.Object
public void train(java.util.Collection<? extends java.util.Map<?,com.ibm.bluej.util.common.MutableDouble>>[] allVectors)
AbstractClassifier
train
in class AbstractClassifier
allVectors
- The indices of the array correspond to the classes to be distinguished. Each class has an Iterable of instances - feature/value maps.public double[] predictProb(java.util.Map<?,com.ibm.bluej.util.common.MutableDouble> features)
AbstractClassifier
predictProb
in class AbstractClassifier
features
- The features for the instance to be classifiedpublic int predict(java.util.Map<?,com.ibm.bluej.util.common.MutableDouble> features)
AbstractClassifier
predict
in class AbstractClassifier
features
- The features for the instance to be classifiedpublic static void main(java.lang.String[] args)