Package | Description |
---|---|
com.ibm.bluej.util.common |
Provides utilities for collection reading, normalization, iteration and data handling
|
Modifier and Type | Field and Description |
---|---|
MutableDouble |
MutableDoubleHashMap.OverlapRecord.val1 |
MutableDouble |
MutableDoubleHashMap.OverlapRecord.val2 |
Modifier and Type | Method and Description |
---|---|
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.buildKeyDims(java.util.Map<S,M> coOccurrence,
int numDims) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.conditionPMI(java.util.Map<S,M> coOccurrence) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.conditionPMI(java.util.Map<S,M> coOccurrence)
every entry in the co-occurrence matrix is replaced by the pointwise mutaul information of the
first key and the second key the frequency of the first key is given in firstFreq, the total is
in firstTotal so that p(first) is firstFreq.get(first)/firstTotal; similarly for second coTotal
is given in the second so that p(first & second) = coOccurrence.get(first).get(second)/coTotal
in this version, the coOccurrence matrix is assumed to be complete, so that the firstFreq,
secondFreq and all totals can be inferred from coOccurrence
|
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.conditionPMI(java.util.Map<S,M> coOccurrence,
double minFirst,
double minSecond) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.conditionPMI(java.util.Map<S,M> coOccurrence,
java.util.Map<S,MutableDouble> firstFreq,
java.util.Map<T,MutableDouble> secondFreq,
double firstTotal,
double secondTotal,
double coTotal) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.conditionPMI(java.util.Map<S,M> coOccurrence,
java.util.Map<S,MutableDouble> firstFreq,
java.util.Map<T,MutableDouble> secondFreq,
double firstTotal,
double secondTotal,
double coTotal)
http://en.wikipedia.org/wiki/Pointwise_mutual_information every entry in the co-occurrence
matrix is replaced by the pointwise mutual information of the first key and the second key the
frequency of the first key is given in firstFreq, the total is in firstTotal so that p(first)
is firstFreq.get(first)/firstTotal; similarly for second coTotal is given in the second so that
p(first & second) = coOccurrence.get(first).get(second)/coTotal the pmi(x,y) is log(p(x&y) /
(p(x) * p(y)) but the matrix gives frequencies
|
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.getDefaultZero(java.util.Map<S,M> map,
S key1,
T key2) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.increase(java.util.Map<S,M> doubleMap,
FunVT<M> factory,
S key1,
T key2,
double value) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.thresholds(java.util.Map<S,M> doubleMap,
double minValue,
double maxValue) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.thresholds(java.util.Map<S,M> doubleMap,
double minValue,
double maxValue) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.thresholdsAbs(java.util.Map<S,M> doubleMap,
double minValue,
double maxValue) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.thresholdsAbs(java.util.Map<S,M> doubleMap,
double minValue,
double maxValue) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.trimDimensions2(java.util.Map<S,M> coOccurrence,
double retainLength) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.trimDimensions2(java.util.Map<S,M> coOccurrence,
double retainLength) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.trimDouble(java.util.Map<S,M> coOccurrence,
double minFirst,
double minSecond) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.trimDouble(java.util.Map<S,M> coOccurrence,
double minFirst,
double minSecond) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.trimDoubleByThreshold(java.util.Map<S,M> doubleMap,
double removeBelow) |
Modifier and Type | Method and Description |
---|---|
static <K1,K2> MutableDouble |
SparseVectors.get(java.util.Map<K1,java.util.HashMap<K2,MutableDouble>> map,
K1 key1,
K2 key2,
double deflt) |
static <K> MutableDouble |
SparseVectors.get(java.util.Map<K,MutableDouble> map,
K key,
double deflt) |
MutableDouble |
SparseVectors.OverlapRecord.getFirst() |
MutableDouble |
SparseVectors.OverlapRecord.getSecond() |
static MutableDouble |
MutableDoubleHashMap.maxValue(java.util.Map<?,MutableDouble> map) |
static MutableDouble |
SparseVectors.maxValue(java.util.Map<?,MutableDouble> map)
returns the maximum value, null if empty
|
static MutableDouble |
MutableDoubleHashMap.minValue(java.util.Map<?,MutableDouble> map) |
static MutableDouble |
SparseVectors.minValue(java.util.Map<?,MutableDouble> map) |
Modifier and Type | Method and Description |
---|---|
static <T> java.util.HashMap<T,MutableDouble> |
MutableDoubleHashMap.copyValues(java.util.Map<T,MutableDouble> map) |
static <T> java.util.HashMap<T,MutableDouble> |
SparseVectors.copyValues(java.util.Map<T,MutableDouble> map) |
static <T> java.util.HashMap<T,MutableDouble> |
MutableDoubleHashMap.fromImmutable(java.util.Map<T,java.lang.Double> im) |
static <T> java.util.HashMap<T,MutableDouble> |
SparseVectors.fromImmutable(java.util.Map<T,java.lang.Double> im) |
static java.util.HashMap<java.lang.String,MutableDouble> |
SparseVectors.fromString(java.lang.String map) |
static java.util.HashMap<java.lang.String,MutableDouble> |
MutableDoubleHashMap.fromTSVString(java.lang.Iterable<java.lang.String> lines,
double min) |
static java.util.HashMap<java.lang.String,MutableDouble> |
SparseVectors.fromTSVString(java.lang.Iterable<java.lang.String> lines,
double min) |
static java.util.HashMap<java.lang.String,MutableDouble> |
MutableDoubleHashMap.fromTSVString(java.lang.String tsv,
double min) |
static java.util.HashMap<java.lang.String,MutableDouble> |
SparseVectors.fromTSVString(java.lang.String tsv,
double min) |
static <T> java.util.HashMap<T,MutableDouble> |
MutableDoubleHashMap.getGrubbsZ(java.util.Map<T,MutableDouble> m,
double mean,
double variance) |
static <T> Pair<T,MutableDouble> |
MutableDoubleHashMap.maxEntry(java.util.Map<T,MutableDouble> map) |
static <T> Pair<T,MutableDouble> |
SparseVectors.maxEntry(java.util.Map<T,MutableDouble> map) |
static <T> java.util.List<Pair<T,MutableDouble>> |
MutableDoubleHashMap.sorted(java.util.Map<T,MutableDouble> m)
least to greatest
|
static <T> java.util.List<Pair<T,MutableDouble>> |
SparseVectors.sorted(java.util.Map<T,MutableDouble> m)
least to greatest
|
static <T> java.util.List<Pair<T,MutableDouble>> |
MutableDoubleHashMap.sorted(java.util.Map<T,MutableDouble> m,
SecondPairComparator<T,MutableDouble> comp) |
static <T> java.util.List<Pair<T,MutableDouble>> |
SparseVectors.sorted(java.util.Map<T,MutableDouble> m,
SecondPairComparator<T,MutableDouble> comp)
returns the sparse vector as a list of pairs, sorted by comp
|
static <T> java.util.List<Pair<T,MutableDouble>> |
MutableDoubleHashMap.sortedReverse(java.util.Map<T,MutableDouble> m)
greatest to least
|
static <T> java.util.List<Pair<T,MutableDouble>> |
SparseVectors.sortedReverse(java.util.Map<T,MutableDouble> m)
greatest to least
|
static java.util.HashMap<java.lang.Integer,MutableDouble> |
DenseVectors.toSparse(double[] v) |
Modifier and Type | Method and Description |
---|---|
int |
MutableDouble.AbsValueComparator.compare(MutableDouble o1,
MutableDouble o2) |
int |
MutableDouble.compareTo(MutableDouble that) |
Modifier and Type | Method and Description |
---|---|
static <T> void |
MutableDoubleHashMap.addTo(java.util.Map<T,MutableDouble> addTo,
java.util.Map<T,MutableDouble> toAdd) |
static <T> void |
MutableDoubleHashMap.addTo(java.util.Map<T,MutableDouble> addTo,
java.util.Map<T,MutableDouble> toAdd) |
static <T> void |
SparseVectors.addTo(java.util.Map<T,MutableDouble> addTo,
java.util.Map<T,MutableDouble> toAdd)
adds the second sparse vector to the first, modifying the first
|
static <T> void |
SparseVectors.addTo(java.util.Map<T,MutableDouble> addTo,
java.util.Map<T,MutableDouble> toAdd)
adds the second sparse vector to the first, modifying the first
|
static <S,T> void |
MutableDoubleHashMap.addTo2(java.util.Map<T,java.util.HashMap<S,MutableDouble>> addTo,
java.util.Map<T,java.util.HashMap<S,MutableDouble>> toAdd) |
static <S,T> void |
MutableDoubleHashMap.addTo2(java.util.Map<T,java.util.HashMap<S,MutableDouble>> addTo,
java.util.Map<T,java.util.HashMap<S,MutableDouble>> toAdd) |
static <S,T> void |
SparseVectors.addTo2(java.util.Map<T,java.util.HashMap<S,MutableDouble>> addTo,
java.util.Map<T,java.util.HashMap<S,MutableDouble>> toAdd) |
static <S,T> void |
SparseVectors.addTo2(java.util.Map<T,java.util.HashMap<S,MutableDouble>> addTo,
java.util.Map<T,java.util.HashMap<S,MutableDouble>> toAdd) |
static <T> void |
MutableDoubleHashMap.averageIn(double newSize,
java.util.Map<T,MutableDouble> average,
java.util.Map<T,MutableDouble> toAdd,
double count) |
static <T> void |
MutableDoubleHashMap.averageIn(double newSize,
java.util.Map<T,MutableDouble> average,
java.util.Map<T,MutableDouble> toAdd,
double count) |
static <T> void |
MutableDoubleHashMap.averageIn(int newSize,
java.util.Map<T,MutableDouble> average,
java.util.Map<T,MutableDouble> toAdd) |
static <T> void |
MutableDoubleHashMap.averageIn(int newSize,
java.util.Map<T,MutableDouble> average,
java.util.Map<T,MutableDouble> toAdd) |
static <T> void |
MutableDoubleHashMap.averageOut(int oldSize,
java.util.Map<T,MutableDouble> average,
java.util.Map<T,MutableDouble> toSubtract) |
static <T> void |
MutableDoubleHashMap.averageOut(int oldSize,
java.util.Map<T,MutableDouble> average,
java.util.Map<T,MutableDouble> toSubtract) |
static double |
SparseVectors.binaryJaccard(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2) |
static double |
SparseVectors.binaryJaccard(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.conditionPMI(java.util.Map<S,M> coOccurrence,
java.util.Map<S,MutableDouble> firstFreq,
java.util.Map<T,MutableDouble> secondFreq,
double firstTotal,
double secondTotal,
double coTotal) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
MutableDoubleHashMap.conditionPMI(java.util.Map<S,M> coOccurrence,
java.util.Map<S,MutableDouble> firstFreq,
java.util.Map<T,MutableDouble> secondFreq,
double firstTotal,
double secondTotal,
double coTotal) |
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.conditionPMI(java.util.Map<S,M> coOccurrence,
java.util.Map<S,MutableDouble> firstFreq,
java.util.Map<T,MutableDouble> secondFreq,
double firstTotal,
double secondTotal,
double coTotal)
http://en.wikipedia.org/wiki/Pointwise_mutual_information every entry in the co-occurrence
matrix is replaced by the pointwise mutual information of the first key and the second key the
frequency of the first key is given in firstFreq, the total is in firstTotal so that p(first)
is firstFreq.get(first)/firstTotal; similarly for second coTotal is given in the second so that
p(first & second) = coOccurrence.get(first).get(second)/coTotal the pmi(x,y) is log(p(x&y) /
(p(x) * p(y)) but the matrix gives frequencies
|
static <S,T,M extends java.util.Map<T,MutableDouble>> |
SparseVectors.conditionPMI(java.util.Map<S,M> coOccurrence,
java.util.Map<S,MutableDouble> firstFreq,
java.util.Map<T,MutableDouble> secondFreq,
double firstTotal,
double secondTotal,
double coTotal)
http://en.wikipedia.org/wiki/Pointwise_mutual_information every entry in the co-occurrence
matrix is replaced by the pointwise mutual information of the first key and the second key the
frequency of the first key is given in firstFreq, the total is in firstTotal so that p(first)
is firstFreq.get(first)/firstTotal; similarly for second coTotal is given in the second so that
p(first & second) = coOccurrence.get(first).get(second)/coTotal the pmi(x,y) is log(p(x&y) /
(p(x) * p(y)) but the matrix gives frequencies
|
static java.util.HashMap<?,IndexValuePair> |
MutableDoubleHashMap.convertToIndex(java.util.Map<?,MutableDouble> hashMap,
int firstIndex,
double minimum) |
static <T> java.util.HashMap<T,MutableDouble> |
MutableDoubleHashMap.copyValues(java.util.Map<T,MutableDouble> map) |
static <T> java.util.HashMap<T,MutableDouble> |
SparseVectors.copyValues(java.util.Map<T,MutableDouble> map) |
static <K> double |
SparseVectors.cosineSimilarity(java.util.Map<K,MutableDouble> c1,
java.util.Map<K,MutableDouble> c2)
http://en.wikipedia.org/wiki/Cosine_similarity if it would be NaN, it is instead zero
|
static <K> double |
SparseVectors.cosineSimilarity(java.util.Map<K,MutableDouble> c1,
java.util.Map<K,MutableDouble> c2)
http://en.wikipedia.org/wiki/Cosine_similarity if it would be NaN, it is instead zero
|
static <S> double |
MutableDoubleHashMap.cosineSimilarity(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2) |
static <S> double |
MutableDoubleHashMap.cosineSimilarity(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2) |
static <S> double |
MutableDoubleHashMap.cosineSimilarity(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2,
double sizePenalty) |
static <S> double |
MutableDoubleHashMap.cosineSimilarity(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2,
double sizePenalty) |
static <S> double |
MutableDoubleHashMap.cosineSimilarityAlt(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2,
double sizePenalty) |
static <S> double |
MutableDoubleHashMap.cosineSimilarityAlt(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2,
double sizePenalty) |
static <S> double |
MutableDoubleHashMap.cosineSimilarityFlex(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2,
double sizePenalty,
FunST<S,java.lang.Double> weightFun,
FunST<java.lang.Double,java.lang.Double> thresholdFun) |
static <S> double |
MutableDoubleHashMap.cosineSimilarityFlex(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2,
double sizePenalty,
FunST<S,java.lang.Double> weightFun,
FunST<java.lang.Double,java.lang.Double> thresholdFun) |
static double |
MutableDoubleHashMap.cosineSimilarityOld(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2,
double sizePenalty)
Deprecated.
|
static double |
MutableDoubleHashMap.cosineSimilarityOld(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2,
double sizePenalty)
Deprecated.
|
static <T> void |
MutableDoubleHashMap.divideBy(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div) |
static <T> void |
MutableDoubleHashMap.divideBy(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div) |
static <T> void |
SparseVectors.divideBy(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div) |
static <T> void |
SparseVectors.divideBy(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div) |
static <T> void |
MutableDoubleHashMap.divideByAdd1(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div) |
static <T> void |
MutableDoubleHashMap.divideByAdd1(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div) |
static <T> void |
SparseVectors.divideByAdd1(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div)
Divides each entry in m by the corresponding entry in div with missing div = 0, adds 1 to each div
|
static <T> void |
SparseVectors.divideByAdd1(java.util.Map<T,MutableDouble> m,
java.util.Map<T,MutableDouble> div)
Divides each entry in m by the corresponding entry in div with missing div = 0, adds 1 to each div
|
static <K> double |
SparseVectors.dotProduct(java.util.Map<K,MutableDouble> x,
java.util.Map<K,MutableDouble> y)
"It is just the mathematical notion of dot product, sum of the products of each dimension
|
static <K> double |
SparseVectors.dotProduct(java.util.Map<K,MutableDouble> x,
java.util.Map<K,MutableDouble> y)
"It is just the mathematical notion of dot product, sum of the products of each dimension
|
static <S> double |
MutableDoubleHashMap.dotProduct(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2) |
static <S> double |
MutableDoubleHashMap.dotProduct(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2) |
static <T> boolean |
MutableDoubleHashMap.equals(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static <T> boolean |
MutableDoubleHashMap.equals(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static <T> boolean |
SparseVectors.equals(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static <T> boolean |
SparseVectors.equals(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static <S> double |
SparseVectors.euclidean(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2) |
static <S> double |
SparseVectors.euclidean(java.util.Map<S,MutableDouble> c1,
java.util.Map<S,MutableDouble> c2) |
static <K1,K2> MutableDouble |
SparseVectors.get(java.util.Map<K1,java.util.HashMap<K2,MutableDouble>> map,
K1 key1,
K2 key2,
double deflt) |
static <K> MutableDouble |
SparseVectors.get(java.util.Map<K,MutableDouble> map,
K key,
double deflt) |
static <K> double |
MutableDoubleHashMap.getDefaultZero(java.util.Map<K,MutableDouble> m,
K key) |
static <K> double |
SparseVectors.getDefaultZero(java.util.Map<K,MutableDouble> m,
K key)
gets the value for the dimension key.
|
static <T> java.util.HashMap<T,MutableDouble> |
MutableDoubleHashMap.getGrubbsZ(java.util.Map<T,MutableDouble> m,
double mean,
double variance) |
static int[] |
MutableDoubleHashMap.getHisto(java.util.Map<?,MutableDouble> m,
double[] thresholds) |
static int[] |
SparseVectors.getHisto(java.util.Map<?,MutableDouble> m,
double[] thresholds)
thresholds is assumed sorted least to greatest the length of the returned value is one larger
than thresholds the returned value in position i is equal to the number of entries in the
sparse vector greater than thresholds[i-1] and less than thresholds[i] at the first position
the value is equal to the number of entries in the sparse vector less than any threshold at the
final position the value is equal to the number of entries greater than any threshold
|
static int[] |
MutableDoubleHashMap.getHisto2(java.util.Map<?,? extends java.util.Map<?,MutableDouble>> m,
double[] thresholds) |
static <T> java.util.Collection<T> |
MutableDoubleHashMap.getKeyDims(java.util.Map<T,MutableDouble> map,
int numDims) |
static <T> java.util.Collection<T> |
SparseVectors.getKeyDims(java.util.Map<T,MutableDouble> map,
int numDims)
Returns the keys associated with the numDims greatest values
|
static double |
MutableDoubleHashMap.getMean(java.util.Map<?,MutableDouble> m) |
static double |
SparseVectors.getMean(java.util.Map<?,MutableDouble> m)
returns the average value
|
static double |
MutableDoubleHashMap.getNorm(java.util.Map<?,MutableDouble> m) |
static double |
MutableDoubleHashMap.getOneNorm(java.util.Map<?,MutableDouble> m) |
static <T> java.util.List<MutableDoubleHashMap.OverlapRecord<T>> |
MutableDoubleHashMap.getOverlap(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static <T> java.util.List<MutableDoubleHashMap.OverlapRecord<T>> |
MutableDoubleHashMap.getOverlap(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static <T> java.util.List<SparseVectors.OverlapRecord<T>> |
SparseVectors.getOverlap(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2)
returns a sorted list with a OverlapRecord for every dimension in which both vectors have a
value greater than zero
|
static <T> java.util.List<SparseVectors.OverlapRecord<T>> |
SparseVectors.getOverlap(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2)
returns a sorted list with a OverlapRecord for every dimension in which both vectors have a
value greater than zero
|
static <T> java.util.List<MutableDoubleHashMap.OverlapRecord<T>> |
MutableDoubleHashMap.getOverlapDirectional(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static <T> java.util.List<MutableDoubleHashMap.OverlapRecord<T>> |
MutableDoubleHashMap.getOverlapDirectional(java.util.Map<T,MutableDouble> m1,
java.util.Map<T,MutableDouble> m2) |
static double |
MutableDoubleHashMap.getTwoNorm(java.util.Map<?,MutableDouble> m)
Version of getNorm that doesn't take the square root
|
static double |
MutableDoubleHashMap.getVariance(java.util.Map<?,MutableDouble> m,
double mean) |
static double |
SparseVectors.getVariance(java.util.Map<?,MutableDouble> m,
double mean)
returns the variance of the values in m, assuming that their mean is 'mean'
|
static <S,T> boolean |
MutableDoubleHashMap.increase(java.util.Map<S,java.util.HashMap<T,MutableDouble>> doubleMap,
S key1,
T key2,
double value)
Increase the key1->key2->v by value
|
static <S,T> boolean |
SparseVectors.increase(java.util.Map<S,java.util.HashMap<T,MutableDouble>> doubleMap,
S key1,
T key2,
double value)
increase the entry corresponding to key1,key2 by value return true iff the entry was created
|
static <T> boolean |
MutableDoubleHashMap.increase(java.util.Map<T,MutableDouble> map,
T key,
double value) |
static <T> boolean |
SparseVectors.increase(java.util.Map<T,MutableDouble> map,
T key,
double value)
increase the entry corresponding to key by value return true iff the entry was created
|
static double |
MutableDoubleHashMap.jaccard(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2) |
static double |
MutableDoubleHashMap.jaccard(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2) |
static <T> void |
MutableDoubleHashMap.linearScaleUnitVariance(java.util.Map<T,MutableDouble> m) |
static <T> void |
SparseVectors.linearScaleUnitVariance(java.util.Map<T,MutableDouble> m) |
static <T> Pair<T,MutableDouble> |
MutableDoubleHashMap.maxEntry(java.util.Map<T,MutableDouble> map) |
static <T> Pair<T,MutableDouble> |
SparseVectors.maxEntry(java.util.Map<T,MutableDouble> map) |
static <T> T |
MutableDoubleHashMap.maxKey(java.util.Map<T,MutableDouble> map) |
static <T> T |
SparseVectors.maxKey(java.util.Map<T,MutableDouble> map)
returns the key for the maximum value, null if empty
|
static MutableDouble |
MutableDoubleHashMap.maxValue(java.util.Map<?,MutableDouble> map) |
static MutableDouble |
SparseVectors.maxValue(java.util.Map<?,MutableDouble> map)
returns the maximum value, null if empty
|
static MutableDouble |
MutableDoubleHashMap.minValue(java.util.Map<?,MutableDouble> map) |
static MutableDouble |
SparseVectors.minValue(java.util.Map<?,MutableDouble> map) |
static double |
MutableDoubleHashMap.normalize(java.util.Map<?,MutableDouble> m) |
static double |
SparseVectors.normalize(java.util.Map<?,MutableDouble> m)
scale the vector such that its twoNorm is now 1.0 return the twoNorm before it was scaled
|
static double |
MutableDoubleHashMap.normalizeOne(java.util.Map<?,MutableDouble> m) |
static double |
SparseVectors.normalizeOne(java.util.Map<?,MutableDouble> m)
scale the vector such that its oneNorm is now 1.0 return the oneNorm before it was scaled
|
static double |
SparseVectors.oneNorm(java.util.Map<?,MutableDouble> x)
oneNorm = L1 norm = Manhattan norm http://en.wikipedia.org/wiki/Norm_(mathematics)
|
static <T> java.lang.Double |
MutableDoubleHashMap.rank(java.util.Map<T,MutableDouble> map,
T key)
Rank 1 means key is the maxKey, rank 2 means one entry is greater...
|
static <T> java.lang.Double |
SparseVectors.rank(java.util.Map<T,MutableDouble> map,
T key)
Rank 1 means key is the maxKey, rank 2 means one entry is greater...
|
static void |
MutableDoubleHashMap.scale(java.util.Map<?,MutableDouble> m,
double scalingFactor) |
static void |
SparseVectors.scale(java.util.Map<?,MutableDouble> m,
double scalingFactor)
multiply every entry by the scalingFactor
|
static <T> void |
SparseVectors.set(java.util.Map<T,MutableDouble> toSet,
java.util.Map<T,MutableDouble> values) |
static <T> void |
SparseVectors.set(java.util.Map<T,MutableDouble> toSet,
java.util.Map<T,MutableDouble> values) |
static <T> boolean |
SparseVectors.set(java.util.Map<T,MutableDouble> map,
T key,
double setTo) |
static <T> void |
MutableDoubleHashMap.setMax(java.util.Map<T,MutableDouble> map,
T key,
double maybeMax) |
static <T> boolean |
SparseVectors.setMax(java.util.Map<T,MutableDouble> map,
T key,
double maybeMax) |
static <T> java.util.List<Pair<T,MutableDouble>> |
MutableDoubleHashMap.sorted(java.util.Map<T,MutableDouble> m)
least to greatest
|
static <T> java.util.List<Pair<T,MutableDouble>> |
SparseVectors.sorted(java.util.Map<T,MutableDouble> m)
least to greatest
|
static <T> java.util.List<Pair<T,MutableDouble>> |
MutableDoubleHashMap.sorted(java.util.Map<T,MutableDouble> m,
SecondPairComparator<T,MutableDouble> comp) |
static <T> java.util.List<Pair<T,MutableDouble>> |
MutableDoubleHashMap.sorted(java.util.Map<T,MutableDouble> m,
SecondPairComparator<T,MutableDouble> comp) |
static <T> java.util.List<Pair<T,MutableDouble>> |
SparseVectors.sorted(java.util.Map<T,MutableDouble> m,
SecondPairComparator<T,MutableDouble> comp)
returns the sparse vector as a list of pairs, sorted by comp
|
static <T> java.util.List<Pair<T,MutableDouble>> |
SparseVectors.sorted(java.util.Map<T,MutableDouble> m,
SecondPairComparator<T,MutableDouble> comp)
returns the sparse vector as a list of pairs, sorted by comp
|
static <T> java.util.List<Pair<T,MutableDouble>> |
MutableDoubleHashMap.sortedReverse(java.util.Map<T,MutableDouble> m)
greatest to least
|
static <T> java.util.List<Pair<T,MutableDouble>> |
SparseVectors.sortedReverse(java.util.Map<T,MutableDouble> m)
greatest to least
|
static <T> void |
MutableDoubleHashMap.subtract(java.util.Map<T,MutableDouble> from,
java.util.Map<T,MutableDouble> x,
boolean newEntries) |
static <T> void |
MutableDoubleHashMap.subtract(java.util.Map<T,MutableDouble> from,
java.util.Map<T,MutableDouble> x,
boolean newEntries) |
static <T> void |
SparseVectors.subtract(java.util.Map<T,MutableDouble> from,
java.util.Map<T,MutableDouble> x,
boolean newEntries)
the values in from are reduced by the corresponding amount in x if newEntries is true, a
missing (zero) value in 'from' for 'key' will result in a new entry that is negative x.get(key)
only the first sparse vector is modified
|
static <T> void |
SparseVectors.subtract(java.util.Map<T,MutableDouble> from,
java.util.Map<T,MutableDouble> x,
boolean newEntries)
the values in from are reduced by the corresponding amount in x if newEntries is true, a
missing (zero) value in 'from' for 'key' will result in a new entry that is negative x.get(key)
only the first sparse vector is modified
|
static double |
MutableDoubleHashMap.sum(java.util.Map<?,MutableDouble> c1) |
static double |
SparseVectors.sum(java.util.Map<?,MutableDouble> c1)
return the sum of the entries in the vector
|
static double |
MutableDoubleHashMap.sum2(java.util.Map<?,? extends java.util.Map<?,MutableDouble>> c1) |
static double |
SparseVectors.sum2(java.util.Map<?,? extends java.util.Map<?,MutableDouble>> c1)
return the sum of the entries in the matrix
|
static double[] |
MutableDoubleHashMap.toDense(java.util.Map<java.lang.Integer,MutableDouble> m) |
static double[] |
SparseVectors.toDense(java.util.Map<java.lang.Integer,MutableDouble> m) |
static <T> java.util.HashMap<T,java.lang.Double> |
MutableDoubleHashMap.toImmutable(java.util.Map<T,MutableDouble> m) |
static <T> java.util.HashMap<T,java.lang.Double> |
SparseVectors.toImmutable(java.util.Map<T,MutableDouble> m) |
static <K> java.lang.String |
SparseVectors.toString(java.util.Map<K,MutableDouble> x)
for each entry, one per line, it returns the toString of the key, then a space, then the value
the entries are sorted by absolute value, greatest to least the toString of the key is padded
with spaces on the left so that the keys line up on the right
|
static <K> java.lang.String |
SparseVectors.toString(java.util.Map<K,MutableDouble> x,
int topN)
for each entry, one per line, it returns the toString of the key, then a space, then the value
the topN entries are sorted by absolute value, greatest to least the toString of the key is
padded with spaces on the left so that the keys line up on the right
|
static <T> java.lang.String |
MutableDoubleHashMap.toString(java.util.Map<T,MutableDouble> m) |
static <T> java.lang.String |
MutableDoubleHashMap.toString(java.util.Map<T,MutableDouble> m,
int topN) |
static <T> java.lang.String |
MutableDoubleHashMap.toString(java.util.Map<T,MutableDouble> m,
int topN,
int width) |
static double |
MutableDoubleHashMap.totalOverlap(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2) |
static double |
MutableDoubleHashMap.totalOverlap(java.util.Map<?,MutableDouble> c1,
java.util.Map<?,MutableDouble> c2) |
static <T> java.lang.String |
MutableDoubleHashMap.toTSVString(java.util.Map<T,MutableDouble> m) |
static <T> java.lang.String |
SparseVectors.toTSVString(java.util.Map<T,MutableDouble> m) |
static <T> void |
MutableDoubleHashMap.toTSVString(java.util.Map<T,MutableDouble> m,
java.lang.String filename) |
static <T> void |
SparseVectors.toTSVString(java.util.Map<T,MutableDouble> m,
java.lang.String filename) |
static <K> void |
MutableDoubleHashMap.trimByThreshold(java.util.Map<K,MutableDouble> hashMap,
double removeBelow) |
static <K> void |
SparseVectors.trimByThreshold(java.util.Map<K,MutableDouble> map,
double removeBelow)
emoves all entries less than 'removeBelow
|
static <K> void |
MutableDoubleHashMap.trimByThresholdAbs(java.util.Map<K,MutableDouble> hashMap,
double removeBelow) |
static <K> void |
SparseVectors.trimByThresholdAbs(java.util.Map<K,MutableDouble> hashMap,
double removeBelow) |
static <T> void |
MutableDoubleHashMap.trimDimensions(java.util.Map<T,MutableDouble> map,
double retainLength) |
static <T> void |
SparseVectors.trimDimensions(java.util.Map<T,MutableDouble> map,
double retainLength) |
static <E> int |
SparseVectors.trimDoubleByThreshold(java.util.Map<E,? extends java.util.Map<E,MutableDouble>> doubleMap,
double removeBelow)
removes all entries less than 'removeBelow', returns total number of entries in the sparse
matrix
|
static <T> void |
MutableDoubleHashMap.trimToTopN(java.util.Map<T,MutableDouble> map,
int maxSize) |
static <T> void |
SparseVectors.trimToTopN(java.util.Map<T,MutableDouble> map,
int maxSize) |
static double |
SparseVectors.twoNorm(java.util.Map<?,MutableDouble> x)
twoNorm = L2 norm = Euclidean norm http://en.wikipedia.org/wiki/Norm_(mathematics)
|
Constructor and Description |
---|
MutableDoubleHashMap.OverlapRecord(T key,
MutableDouble val1,
MutableDouble val2,
double overlap) |
SparseVectors.OverlapRecord(T key,
MutableDouble first,
MutableDouble second,
double overlap) |